Rhamphicarpa fistulosa (Hochst.) Benth. is an annual facultative parasitic plant adapted to hydromorphic soils. In sub-Saharan Africa it causes high crop losses as a weed in rainfed lowland rice (Oryza sativa L.). Fertilizers are often proposed as a control measure against hemiparasitic weeds, but an understanding of the nutrient effects on R. fistulosa is currently still elusive. In two greenhouse pot experiments, conducted in 2016 in the Netherlands and in 2019 in the UK, host plants (O. sativa, cv IR64) and parasitic plants (R. fistulosa) were grown alone or combined and were subjected to different levels of nutrient availability. Biomass measurements were used to assess whether and how effects of nutrient availability are expressed in the host and parasite. Compared with parasite-free host plants, the biomass of parasite-infested plants was severely reduced, and nutrient effects on host plant biomass were less pronounced. Conversely, increased nutrient availability did not have an effect on parasitic plants when grown alone, but when grown with a host the parasitic plant biomass increased proportionally. Grown together, the combined biomass of host plant and parasite was substantially lower than that of the host plant grown alone. The ratio of biomass between host plant and parasite was unaffected by nutrient availability. Fertilization benefits to rice plants are severely reduced but not completely nullified by R. fistulosa infection. The benefits to production and reproduction accrued by the parasite from increased nutrient availability are restricted to conditions in the presence of a host plant. Host presence and nutrient effects are thus observed to be synergetic; R. fistulosa plants parasitizing a suitable host respond strongly to increasing levels of nutrients. This is associated with an increased root biomass of the parasitic plant itself, but is more likely to result from exploitation of the nutrient uptake capacity of the host plant it parasitizes.
Read full abstract