The aim of this paper is to optimize the depth of penetration with regard to the effect of MgO nanoparticles and welding input parameters. For this purpose, response surface methodology (RSM) with central composite rotatable design (CCRD) was used. The welding current, arc voltage, nozzle-to-plate distance, welding speed, and thickness of MgO nanoparticles were determined as the factors, and depth of penetration was considered as the response. Quadratic polynomial model was used for determining the relationship between the response and factors. A reduced model was obtained from the data which the values of R 2, R 2 (pred), and R 2 (adj) of this model were 92.05, 69.05, and 86.31 pct, respectively. Thus, this model was suitable, and it was used to determine the optimum levels of factors. The results show that the welding current, arc voltage, and nozzle-to-plate distance factors should be adjusted in high level, and welding speed and thickness of MgO nanoparticles factors should be adjusted in low level.
Read full abstract