BackgroundOsteoporosis (OP) is a common metabolic bone disease. Low-intensity pulsed ultrasound (LIPUS) can effectively promote bone formation and fracture healing. The Wnt/β-catenin signaling pathway is crucial for regulating bone homeostasis and bone diseases, and its downregulation is one of the main mechanisms of osteoporosis pathogenesis. Interleukin-11 (IL-11), which is regulated by mechanical stress, is a key factor in bone remodeling. Here, we investigated the optimal intervention parameters for LIPUS, the relationships among LIPUS, IL-11, and the Wnt/β-catenin signaling pathway, and the effects of LIPUS on bone loss and potential molecular mechanisms in ovariectomized (OVX) mice. MethodsBone marrow mesenchymal stromal cells (BMSCs) were subjected to LIPUS intervention for 0, 10, or 20 min to determine the optimal intervention time. The mediating role of IL-11 in LIPUS intervention was explored through IL-11 knockdown and overexpression. Finally, animal experiments were conducted to investigate the in vivo therapeutic effects of LIPUS. ResultsThe optimal intervention time for LIPUS was 20 min. LIPUS promoted IL-11 expression and upregulated the Wnt/β-catenin signaling pathway, thereby promoting osteogenic differentiation and inhibiting adipogenic differentiation of BMSCs. IL-11 mediates the regulation of the Wnt/β-catenin signaling pathway by LIPUS. Additionally, LIPUS effectively improved the bone microstructure in ovariectomized mice, inhibited bone loss, promoted IL-11 expression in bone tissue, and activated the Wnt/β-catenin signaling pathway in the femur. ConclusionLow-intensity pulsed ultrasound can regulate BMSCs differentiation and inhibit bone loss by promoting IL-11 expression and activating the Wnt/β-catenin signaling pathway.