We investigate the collinear limit of the energy-energy correlator (EEC) in a heavy-ion context. First, we revisit the leading-logarithmic (LL) resummation of this observable in vacuum following a diagrammatic approach. We argue that this route allows to naturally incorporate medium-induced effects into the all-orders structure systematically. As an example, we show how the phase-space constraints imposed by the static medium on vacuum-like emissions can be incorporated into the LL result by modifying the anomalous dimensions. On the fixed-order side, we calculate the O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{O} $$\\end{document}(αs) expansion of the in-medium EEC for a γ → qq¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ q\\overline{q} $$\\end{document} splitting with arbitrary kinematics including, for the first time, subleading colour corrections. When comparing this result to previously used approximations in the literature, we find up to O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{O} $$\\end{document}(1) deviations in the regime of interest for jet quenching signatures. Energy loss effects are also quantified and further suppress the EEC at large angles. These semi-analytic studies are complemented with a phenomenological study using the jet quenching Monte Carlo JetMed. Finally, we argue that the imprint of medium-induced effects in energy-energy correlators can be enhanced by using an alternative definition that takes as input Lund primary declusterings instead of particles.
Read full abstract