Mechanical stimuli and neovascularization are closely coupled to osteogenic differentiation and new bone formation. The purpose of present study was to detect the effect of cyclic mechanical strain on a co-culture system of bone marrow stromal cells (BMSCs) and vascular endothelial cells (VECs) and to clarify the related mechanisms. Primary BMSCs and VECs were isolated from Sprague-Dawley rats and co-cultured at various ratios (1:0, 1:2, 1:4, 4:1, 2:1, 1:1, and 0:1). To determine optimized loading conditions, the cells were then subjected to various cyclic tensile strains (0%, 3%, 6% and 9%) using a Flexcell 5000 mechanical loading system. A protocol of 6% strain on the co-cultured cells at a 1:1 ratio was selected as the optimized culture conditions based on the best osteogenic effects, which included increased ALP activity, matrix mineralization and the expressions of VEGF, Runx-2 and Col-1. The VEGF-R inhibitor tivozanib was used to analyze the paracrine role of VEGF, and the osteogenesis-promoting effects of 6% tensile strain were abrogated in the co-cultured cells treated with tivozanib. These results demonstrate that cyclic tensile strain promotes osteogenic differentiation in BMSC/VEC co-culture systems, possibly via a VEC-mediated paracrine effect of VEGF on BMSCs.
Read full abstract