Calcium has been linked to disease resistance in fruits and vegetables. The effects of calcium nutrition on six hydroponically grown tomato cultivars (`Switch', `Match', `Blitz', `Caruso', `Trust', and `Celebrity') were evaluated in the fall of 1996. Disease resistance and yield were measured for plants grown in either perlite or pine bark mulch. Plants were fertilized with a 5N–11P–26K water-soluble fertilizer solution containing micronutrients and either 60, 120, or 185 mg·L–1 calcium. Disease resistance was determined by measuring disease lesion diameters on mature green harvested fruit 3 to 5 days after inoculating with Botrytis cinerea Pers.: Fr. There was no significant difference in disease when evaluated by medium, cultivar, or calcium treatment. Foliar analysis by Inductively Coupled Argon Plasma Atomic Emission Spectrophotometer (ICAP) indicated that leaf calcium content ranged from 27,000 to 54,000 μg·g–1 dry weight (leaf above fifth flower cluster), but was not significantly different when analyzed by medium, cultivar, or calcium treatment. There was no significant difference in marketable yield due to medium or calcium treatment. Among cultivars, `Trust' had the highest marketable yield at 2.7 kg per plant, which was significantly different from `Celebrity' at 1.6 kg per plant. This experiment suggests that a cheaper medium (pine bark) and lower calcium levels can be utilized in fall tomato production.