In a series of earlier studies, the effect of benzo-annelation was found to be a useful tool for tuning the aromaticity in polycyclic conjugated compounds to desired level. In this work we studied the (anti)aromaticity of benzo-annelated derivatives of three conjugated hydrocarbons (anthracene, fluoranthene and biphenylene) in their lowest lying singlet (S0) and triplet (T1) states by means of the energy effect (ef), harmonic oscillator model of aromaticity (HOMA), multicentre delocalization indices (MCI), magnetically induced current densities (MICDs) and nucleus independent chemical shifts (NICS). We showed that benzo-annelation is a topology-based effect which can be used to modify the T1 state excitation energies (E(T1)). A quantitative model was established being able to accurately predict the E(T1) based only on the numbers of angularly, linearly and geminally annelated benzene rings. In addition, it was demonstrated that the E(T1) can be directly related to the (anti)aromatic character of the central ring in the studied molecules in their S0 state.