Electromagnetic (EM) wave absorption performance is greatly affected by the microscopic morphology of the absorbing material particles. In this study, a facile and efficient ball-milling method was applied to increase the aspect ratio of particles and prepare flaky carbonyl iron powders (F-CIPs), one of the most readily commercially available absorbing materials. The effect of ball-milling time and rotation speed on the absorption behaviors of the F-CIPs was investigated. The microstructures and compositions of the F-CIPs were determined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The EM parameters were measured using a vector network analyzer (VNA) in the frequency range of 2-18 GHz. The results indicated that the ball-milled flaky CIPs exhibited a better absorption ability than the raw spherical CIPs. Among all the samples, the sample milled at 200 r/min for 12 h and the sample milled at 300 r/min for 8 h showed remarkable EM parameters. The ball-milling sample with 50 wt.% F-CIPs had a minimum reflection loss peak of -14.04 dB at a thickness of 2 mm and a maximum bandwidth (RL < -7 dB) of 8.43 GHz at a thickness of 2.5 mm, a result that conformed with the transmission line theory. Hence, the ball-milled flaky CIPs were considered to be beneficial for microwave absorption.
Read full abstract