Catalytic upgrading of coal pyrolysis volatiles is a promising technology to bolster the production of value-added chemicals from coal. To optimize product distribution and mitigate catalyst deactivation, this work investigated tandem catalysts combining the upper alkaline earth oxides (CaO or MgO) with the lower modified HZSM-5 (mesopore creation and Ga loading). The pre-cracking of volatiles over CaO or MgO lowered the average molecule size of tar components. The diffusion properties and aromatization of these pre-cracking-derived intermediates were improved, facilitating the secondary upgrading over HZSM-5-based catalysts, promoting the formation of aromatics. The experimental results showed that tandem CaO-HZSM-5 catalysts presented better synergy to improve the tar components as compared to MgO-HZSM-5, considering the formation of aromatics in tar. In this context, the mesopore and metal Ga were introduced into HZSM-5 to further upgrade the tar quality. The mesoporous structure for HZSM-5-meso and Ga/HZSM-5-meso promoted the conversion of aliphatic hydrocarbons into aromatics. Simultaneous introduction of mesopores and Ga synergistically increased the aromatic content in tar to 41.6% and reduced the carbon deposition to 0.88wt.%. In summary, this work elucidated the mechanism of tandem CaO-modified HZSM-5 catalysis for the upgrading of volatiles from coal pyrolysis.
Read full abstract