The main objectives of this research are to assess groundwater, a primary source of drinking water in the urban areas of Hawler (Erbil) and Bnaslawa in northern Iraq, and the non-carcinogenic human health risks of nitrate contamination associated with drinking water quality. For this purpose, twenty-seven groundwater samples were collected from wells to assess the hydrogeochemical characteristics and groundwater quality for both natural and anthropogenic purposes during the wet (May 2020) and dry (September 2020) seasons. During the wet and dry seasons, NO3− in groundwater ranged from 14.00 to 61.00 mg/L and 12.00 to 60.00 mg/L, with an average value of 35.70 and 29.00 mg/L, respectively. Approximately 25.92% of the samples exceeded the permissible limit of the WHO (2011) drinking water standard. The ratios of NO3−/Na+ vs. Cl−/Na+ and SO42−/Na+ vs. NO3−/Na+ indicate the effect of agricultural activities and wastewater leaking from cesspools or septic tanks on the quality of groundwater during the wet and dry seasons. The entropy weighted water quality index method ranked 62.5% and 75% of the urban groundwater as not recommended for drinking, and the remaining samples are moderately suitable in both wet and dry seasons. The non-carcinogenic human health risk assessment displayed that during the wet and dry seasons, 29.6% and 25.9% of adults, 48% and 30% of children, and 48.1% and 29.6% of infants were exposed to increased concentrations of nitrate in groundwater. Due to high nitrate in drinking water, non-carcinogenic human health risk levels vary as infant > child > adults. The main findings obtained from this study can assist policymakers in better understanding the hydrogeochemical properties of groundwater in terms of drinking water safety, thereby facilitating the management of water resources to take the necessary measures.
Read full abstract