Agrocybe chaxingu is an edible and medicinal mushroom widely cultivated in China (Liu et al. 2021). Agrocybe chaxingu is extremely well-liked for the unique flavor and nutritional value. In May 2021, a serious white mucus disease was observed in the farms of A. chaxingu in the Ganxian district of Ganzhou City, Jiangxi Province, China, with an approximate disease incidence of 20%. In the years of 2022 and 2023, the same white mucus disease on A. chaxingu was observed in the farms in Nanchang City, Jiujiang City and Guangchang County, Jiangxi Province, China. The disease generally occurs on the media, stipe or pileus of A. chaxingu under condition of high humidity. The plasmodial slime molds migrated from the surface of culture media (78% hardwood sawdust, 15% wheat bran, 5% tea seed shell, 1% lime, and 1% gypsum) to the base of fruiting bodies, stipes and finally to pilei, showing as moist, sticky, and white reticulated structures. The infected fruiting bodies of A. chaxingu were completely covered by reticulated plasmodia, displaying a white or pale-yellow color. This resulted in the growth cessation, wilting and eventual death of fruiting body. Microscopic observation found that the plasmodia of slime mold enveloped the hyphae of A. chaxingu, resulting in the fragmentation of the hyphae. The disease can spread quickly, resulting in a 30% reduction in production. Slime mold cultures were isolated by transferring diseased fruiting bodies of A. chaxingu onto oat-agar medium (2% agar and 1% oatmeal) at 25 ℃. The isolates can be obtained after being subcultured for two to three generations. Purified plasmodia were placed on the semi-defined medium (1% tryptone, 1% glucose, 0.15% yeast extract, chick embryo extract and a balanced salt solution) to confirm the absence of bacteria (Daniel et al. 1964) and thus obtained the pure culture. Specimen of the voucher has been deposited in the Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences as number IAAM-W0002. The vegetative plasmodia have a large and well-developed scalloped structure that were white or milky white in colour. The white plasmodium became opaque pale yellow when exposed to light before fruiting. The veins merged and thickened. Fruiting bodies can be formed on the lid or side of the Petri dish under light condition. The fruiting bodies formed papillae with irregular shape, and then the color changed from translucent yellow to greyish black. Spores were usually spherical or subglobose, free, greyish brown in mass, purplish brown, 7-12 μm in diameter under light microscopy. These morphological characteristics were found to be consistent with those of Fuligo gyrosa (Synonym: Physarum gyrosum) (Kim et al. 2009; Shi et al. 2005; Jahn 1902). The identity of the isolates was further confirmed by sequence analysis of the 18S ribosomal RNA gene with primer SMNUR101/NS4 (Rusk et al. 1995; White et al. 1990). Using BLASTn searches, the sequence of 18S rRNA gene (GenBank accession number OR186216) matched the sequence of F. gyrosa (GenBank accession number LC744593) with the identity of 99.91% and coverage of 97%. A phylogenetic tree based on the 18S rRNA gene also demonstrated that the slime mold clustered with F. gyrosa. Over ten isolates have been obtained from the diseased A. chaxingu samples in different factories and identified as F. gyrosa. To test the pathogenicity of F. gyrosa, five healthy young fruiting bodies (three to five days of primordium) of A. chaxingu cultivated in mushroom-growing room were gently inoculated by a 12 mm diameter oat-agar medium with plasmodia at 24 ± 2 ℃ and then were kept with relative humidity of 90%-95%. Five fruiting bodies inoculated with a 12 mm oat-agar medium served as controls. After 5 days, white mucus characteristics and three fifths of death symptoms were observed on the fruiting bodies inoculated with the plasmodia, while the controls remained asymptomatic. The slime mold on the inoculated fruiting bodies was morphologically identical to F. gyrosa that was observed on the initial diseased fruiting bodies. It was also observed the envelopment A. chaxingu hyphae by the plasmodia of slime mold and fragmentation of the hyphae, and the fragmentation was not observed in the controls. Reisolations were prepared from the inoculated fruiting bodies and confirmed to be F. gyrosa based on morphological characteristics and 18S rRNA sequence, thus fulfilling Koch's postulates. Fuligo gyrosa has been reported to cause severe disease in oriental melon in Korea (Kim et al. 2009). This is the first report of F. gyrosa causing white mucus disease in cultivated A. chaxingu. The findings will provide important information on prevention and control of the disease, and be helpful for the development of A. chaxingu industry.