Unmanned aerial vehicle (UAV)-enabled mobile edge computing (MEC) networks have recently been considered to be a support for ground MEC networks to enhance their computation capability. However, the line-of-sight (LOS) channels between the UAV and Internet of Things (IoT) devices can be interfered by various obstacles, such as trees and buildings, resulting in a considerable reduction in the capacity of MEC networks. To solve this issue, a system that combines multiple reconfigurable intelligence surfaces (RISs) with a UAV-enabled MEC network is proposed in this study. A UAV equipped with edge servers is treated as an aerial computing platform for IoT devices, and multi-RISs are utilized to simultaneously improve the communication quality between enhanced UAV and IoT devices. To maximize the sum computation bits of the system, a problem that jointly optimizes the time slot partition, local computation frequency, transmit power of the devices, UAV receive beamforming vectors, phase shifts of the RISs, and the trajectory of the UAV is formulated. The problem is a typical nonconvex optimization problem; therefore, we propose a recursive algorithm based on the successive convex approximation (SCA) and block coordinate descent (BCD) technology to find an approximate optimal solution. Simulation results demonstrate the effectiveness of the proposed algorithm compared with various benchmark schemes.
Read full abstract