Let G be a graph and H a graph possibly with loops. We will say that a graph G is an H-colored graph if and only if there exists a function c:E(G)⟶V(H)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$c:E(G)\\longrightarrow V(H)$$\\end{document}. A cycle (v1,…,vk,v1)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(v_1,\\ldots ,v_k,v_1)$$\\end{document} is an H-cycle if and only if (c(v1v2),…,c(vk-1vk),\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(c(v_1 v_2),\\ldots ,c(v_{k-1}v_k),$$\\end{document}c(vkv1),c(v1v2))\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$c(v_kv_1), c(v_1 v_2))$$\\end{document} is a walk in H. Whenever H is a complete graph without loops, an H-cycle is a properly colored cycle. In this paper, we work with an H-colored complete graph, namely G, with local restrictions given by an auxiliary graph, and we show sufficient conditions implying that every vertex in V(G) is contained in an H-cycle of length 3 (respectively 4). As a consequence, we obtain some well-known results in the theory of properly colored walks.