Edge bundling is a technique used to improve the readability of large graph drawings by grouping edges to reduce visual complexity. This paper treats this task as a clustering problem, using compatibility metrics to evaluate solutions in an optimization pipeline combined with a clustering ensemble approach. The aim is to present the Clustering Ensemble-based Edge Bundling (CEBEB) method for solving the General-based Edge Bundling (GBEB) problem and report results for some given graphs. The CEBEB method proved very promising and generated better solutions than an existing evolutionary algorithm. Additionally, the paper introduces a new ensemble algorithm, specific for the GBEB, and reviews some previous results.
Read full abstract