Eddy current testing (ECT) is a crucial non-destructive testing (NDT) technique extensively used across various industries to detect surface and sub-surface defects in conductive materials. This review explores the latest advancements and methodologies in the design of eddy current probes, emphasizing their application in diverse industrial contexts such as aerospace, automotive, energy, and electronics. It explores the fundamental principles of ECT, examining how eddy currents interact with material defects to provide valuable insights into material integrity. The integration of numerical simulations, particularly through the Finite Element Method (FEM), has emerged as a transformative approach, enabling the precise modeling of electromagnetic interactions and optimizing probe configurations. Innovative probe designs, including multiple coil configurations, have significantly enhanced defect detection capabilities. Despite these advancements, challenges remain, particularly in calibration and sensitivity to environmental conditions. This comprehensive overview highlights the evolving landscape of ECT probe design, aiming to provide researchers and practitioners with a detailed understanding of current trends in this dynamic field.
Read full abstract