The cathode-less miniature electron cyclotron resonance ion thruster (ECRIT) has the advantages of long-life and simple-structure. In the ECRIT ion source, the plasma distribution will affect the beam extraction, and the relative position of the ECR layer determined by the magnetic field structure and the flat-ring antenna together affect the plasma distribution. Due to the sheath, the ions or electrons in the plasma will be accelerated to sputter the surface of wall and induce plasma loss. It is important to investigate the wall currents and plasma characteristics. Therefore, particle-in-cell with Monte Carlo collision (PIC/MCC) model is established in this article to study the influence of the magnetic field structure on the plasma and wall current characteristics of 2-cm ECRIT ion source. The calculation results show that the electrons are confined near the ECR layer of antenna by the magnetic mirror, which leads the plasma to be distributed near the ECR layer. When the ECR layer is located on the upstream side of the flat-ring antenna, the plasma is concentrated between the antenna and magnet rings, and the ion density in front of the grid is lowest, which results in a lower ion beam current extracted from ion source and a lower current on the surface of magnetic ring and antenna. When the ECR layer is located on the downstream side of the flat-ring antenna, the plasma density near the upstream side of the antenna and grid is high, which results in higher ion beam current extracted from the ion source and higher current on the surface of antenna and magnetic ring. The plasma distribution and the total wall current of the ion source are affected weakly by the magnetic field structure. In this magnetic field structure, the ion sputtering on the flat-ring antenna is serious. Although such a magnetic field design can increase the extracted ion beam current, it will shorten the working life of the ion source. In the future, when designing a new thruster, it is necessary to weigh the ion current of extraction and lifetime to select the appropriate magnetic field structure.
Read full abstract