A molecular diagnostic system using single nucleotide polymorphisms (SNPs) was developed to identify four Sclerotinia species: S. sclerotiorum (Lib.) de Bary, S. minor Jagger, S. trifoliorum Erikss., and the undescribed species Sclerotinia species 1. DNAs of samples are hybridized with each of five 15-bp oligonucleotide probes containing an SNP site midsequence unique to each species. For additional verification, hybridizations were performed using diagnostic single nucleotide substitutions at a 17-bp sequence of the calmodulin locus. The accuracy of these procedures was compared to that of a restriction fragment length polymorphism (RFLP) method based on Southern hybridizations of EcoRI-digested genomic DNA probed with the ribosomal DNA-containing plasmid probe pMF2, previously shown to differentiate S. sclerotiorum, S. minor, and S. trifoliorum. The efficiency of the SNP-based assay as a diagnostic test was evaluated in a blind screening of 48 Sclerotinia isolates from agricultural and wild hosts. One isolate of Botrytis cinerea was used as a negative control. The SNP-based assay accurately identified 96% of Sclerotinia isolates and could be performed faster than RFLP profiling using pMF2. This method shows promise for accurate, high-throughput species identification.
Read full abstract