Eco-driving is one strategy for reducing transportation sector fuel usage and greenhouse gas emissions. With the advancement of connected-vehicle technology, the dynamic eco-driving concept can utilize real-time vehicle-specific information to optimize vehicle speed, thereby further reducing fuel consumption and emissions. The objective of this research was to determine the elements that influence drivers' intentions to practice eco-driving and their acceptance of eco-driving technology. A theoretical model of technology acceptance for both internal combustion engine vehicle (ICEV) and electric vehicle (EV) drivers was built using a mix of the Theory of Planned Behavior (TPB), the Technology Acceptance Model (TAM), and Goal Framing. Drivers’ acceptance of eco-driving system was hypothesized to be based on their intention to perform eco-driving. The model's validity was verified using a structural equation modeling analysis of data from a survey with 340 replies from ICEV drivers and 315 responses from EV drivers. The findings corroborated the original hypotheses in TAM and TPB, and drivers' intention to practice eco-driving had an indirect effect on their intention to utilize the system via the construct of perceived ease of use. In comparison to ICEV drivers, EV drivers possessed a greater understanding of eco-driving. The four goal framing structures each played a different role in the ICEV and EV models. In the ICEV model, the altruistic goal contributed positively to the social norm construct. By contrast, the social norm was positively influenced by the biospheric and the egoistic goals, and negatively influenced by the hedonic goal in the EV model. This study's framework and results provide theoretical and practical guidelines for researchers, manufacturers, and policy-makers to understand drivers' motivation to perform eco-driving and increase drivers' acceptance of the eco-driving system.