We define the two “dual density conditions” (DDC) and (SDDC) for locally convex topological vector spaces and study them in the setting of the class of (DF)- spaces (originally introduced by A. Grothendieck [14]). We show that for a (DF)- space E, (DDC) is equivalent to the metrizability of the bounded subsets of E, and prove that such a space E has (DDC) resp. (SDDC) if and only if the space l∞(E) of all bounded sequences in E is quasibarrelled resp. bornological. As a consequence, we can then characterize the barrelled spaces % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A! ${\cal L}_b(\lambda_1, E)$ of continuous linear mappings from a Kothe echelon space λ1 into a locally complete (DF)- space E; for purposes of a comparison, we also provide the corresponding characterization of the quasibarrelled resp. bornological (DF)- tensor products (λ1)b ′ ⊗e E. Our results on the (DF)- spaces of type % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A! ${\cal L}_b(\lambda_1, E)$ and (λ1)b ′) ⊗e E are of special interest in view of the recent negative solution, due to J. Taskinen (see [25]), of Grothendieck’s “probleme des topologies” ([15]). — In part II of the article, we will treat weighted inductive limits of spaces of continuous functions and their projective hulls (cf. [6]) as an application. In his study of ultrapowers of locally convex spaces, S. Heinrich [16] had found it necessary to introduce the “density condition”. Our article [2] investigated this condition, mainly in the setting of Frechet spaces, and with applications to distinguished echelon spaces λ1. However, on the way to the main theorems of [2], it became apparent that the “right” setting for most of this material was a dual reformulation of the density condition in the context of (DF)- spaces, and this observation prompted the present research.