The clinical manifestations of ischemic cardiomyopathy (ICM) bear resemblance to dilated cardiomyopathy (DCM), yet their treatments and prognoses are quite different. Early differentiation between these conditions yields positive outcomes, but the gold standard (coronary angiography) is invasive. The potential use of ECG signals based on variational mode decomposition (VMD) as an alternative remains underexplored. An ECG dataset containing 87 subjects (44 DCM, 43 ICM) is pre-processed for denoising and heartbeat division. Firstly, the ECG signal is processed by empirical mode decomposition (EMD) and VMD. And then, five modes are determined by correlation analysis. Secondly, bispectral analysis is conducted on these modes, extracting corresponding bispectral and nonlinear features. Finally, the features are processed using five machine learning classification models, and a comparative assessment of their classification efficacy is facilitated. The results show that the technique proposed provides a better categorization for DCM and ICM using ECG signals compared to previous approaches, with a highest classification accuracy of 98.30%. Moreover, VMD consistently outperforms EMD under diverse conditions such as different modes, leads, and classifiers. The superiority of VMD on ECG analysis is verified.