Epstein-Barr virus (EBV) persistently infects T/natural killer (NK) cells causing an array of refractory EBV-associated T/NK-cell lymphoproliferative disorders. EBV-encoded microRNAs are important regulators for EBV latent infection and tumorigenesis. However, the roles of most EBV microRNAs in EBV-infected T/NK cells remain poorly understood. On the basis of a search of the doRiNA database and the BiBiServ2-RNAhybrid website, we predicted that EBV-miR-BART17-3p targeted DDX3X, and we verified the hypothesis by dual-luciferase reporter assay and cell function experiments. In addition, we collected 50 EBV-positive T-, B-, and NK-cell samples from the peripheral blood of EBV-positive cases to examine the role of EBV-miR-BART17-3p in the disease. We found that EBV-miR-BART17-3p directly targeted DDX3X and downregulated DDX3X expression. By analyzing EBV-positive cell samples from cell lines and patients, we found that EBV-miR-BART17-3p was highly expressed only in EBV-positive NK cells and that the overexpression was significantly related to high EBV loads in EBV-infected NK cells. Furthermore, we found that EBV-miR-BART17-3p downregulated the RIG-I-like receptor antiviral pathway and promoted the expression of EBV-encoded proteins in EBV-infected NK cells by targeting DDX3X. Our study showed that EBV-miR-BART17-3p was abundantly expressed in EBV-infected NK cells and inhibited the important antivirus immune responses of hosts by targeting DDX3X of the RIG-I-like receptor pathway. These findings could help us gain insights into the pathogenic mechanisms underlying EBV-associated T/NK-cell lymphoproliferative disorders and find the potential therapeutic target.
Read full abstract