Two end-member scenarios have been proposed for the tectonic situation along the eastern margins of Gondwanaland before Zealandia was formed ca. 100 million years ago (Ma), namely: (1) A subduction zone located far from the eastern margin of Zealandia, wherein Zealandia may have separated from Gondwanaland by plume push of an active hotspot plume.; (2) A subduction zone located along the eastern margin of Gondwanaland, wherein Zealandia possibly separated from Gondwanaland via trench/subduction retreat. Assuming that the thermal structure of the deep mantle and source of hotspot plumes remained relatively stationary over the last hundred million years, major hotspot plumes with a large buoyancy flux did not exist under Zealandia; the eastern margins of Gondwanaland were far from two large low-shear-velocity provinces under the Africa–Atlantic and South Pacific regions. Herein, through numerical studies of three-dimensional global mantle convection, we examined the mantle convection and surface tectonic patterns at ~100 Ma. The present model considered the real configuration of Gondwanaland at the model surface to observe long-term variations of mantle convection and the resulting surface tectonic conditions. The results demonstrate that the extensive subduction zones developed preferentially along the eastern margin of Gondwanaland when the temperature anomaly of the lower mantle was primarily dominated by high-temperature regions under present-day Africa–Atlantic and South Pacific regions. The results of this study support one of the proposed hypotheses, where the breakup at the eastern margins of Gondwanaland at ~100 Ma occurred via trench/subduction retreat.
Read full abstract