Abstract In summer 2014, north China and large areas of northeastern Asia (NCNEA) suffered from the most severe drought of the past 60 years. This study indicates that the East Asian summer precipitation in 2014 exhibited a tripole anomaly, with severe negative anomalies in NCNEA, strong positive anomalies in south China, South Korea, and Japan, and intense negative anomalies in the western North Pacific. Along with the severe tripole precipitation anomalies, there were strong intensities of the Silk Road pattern, the Pacific–Japan pattern, and the Eurasian teleconnection pattern, which were responsible for the strong precipitation anomaly in 2014 through changes to the western Pacific subtropical high (WPSH) and the East Asian trough. Further analysis indicates that the sea surface temperature (SST) in the North Pacific was nearly the warmest in the past 60 years and, together with the strong SST warming in the warm pool region, thus caused the strong Pacific–Japan teleconnection pattern, southward positioning of the WPSH, and weakened East Asian summer monsoon. Additionally, the summertime sea ice cover in the Arctic Ocean was anomalous, resulting in high SST in the Laptev–Kara Sea and, hence, triggering a strong Eurasian teleconnection pattern and contributing to the severe drought of NCNEA. Furthermore, the intense warming over the European Continent and Caspian Sea favored the Silk Road pattern, also contributing to the southward positioning of the WPSH and the NCNEA drought. The NCNEA severe drought was therefore the joint result of Pacific SST anomalies, Arctic sea ice anomalies, and warming over the European Continent and Caspian Sea.