Using meteorological observations, proxies of precipitation and temperature, and climate simulation outputs, we synthetically analyzed the regularities of decadal-centennial-scale changes in the summer thermal contrast between land and ocean and summer precipitation over the East Asian monsoon region during the past millennium; compared the basic characteristics of the East Asian summer monsoon (EASM) circulation and precipitation in the present day, the Little Ice Age (LIA) and the Medieval Warm Period (MWP); and explored their links with solar irradiance and global climate change. The results indicate that over the last 150 years, the EASM circulation and precipitation, indicated by the temperature contrast between the East Asian mainland and adjacent oceans, had a significant decadal perturbation and have been weaker during the period of rapid global warming over the past 50 years. On the centennial time scale, the EASM in the MWP was strongest over the past 1000 years. Over the past 1000 years, the EASM was weakest in 1450–1570. When the EASM circulation was weaker, the monsoon rain belt over eastern China was generally located more southward, with there being less precipitation in North China and more precipitation in the Yangtze River valley; therefore, there was an anomalous pattern of southern flood/northern drought. From the 1900s to 1920s, precipitation had a pattern opposite to that of the southern flood/northern drought, with there being less precipitation in the Yangtze River valley and more precipitation in North China. Compared with the case for the MWP, there was a longer-time-scale southern flood/northern drought phenomenon in 1400–1600. Moreover, the EASM circulation and precipitation did not synchronously vary with the trend of global temperature. During the last 150 years, although the annual mean surface temperature around the world and in China has increased, the EASM circulation and precipitation did not have strengthening or weakening trends. Over the past 1000 years, the weakest EASM occurred ahead of the lowest Northern Hemispheric temperature and corresponded to the weakest solar irradiance.