Wolbachia is an endocellular bacterium infecting arthropods and nematodes. In arthropods, it invades host populations through various mechanisms, affecting host reproduction, the most common of which being cytoplasmic incompatibility (CI). CI is an embryonic mortality occurring when infected males mate with uninfected females or females infected by a different Wolbachia strain. This phenomenon is observed in Drosophila simulans, an intensively studied Wolbachia host, harbouring at least five distinct bacterial strains. In this study, we investigate various aspects of the Wolbachia infections occurring in two continental African populations of D. simulans: CI phenotype, phylogenetic position based on the wsp gene and associated mitochondrial haplotype. From the East African population (Tanzania), we show that (i) the siIII mitochondrial haplotype occurs in continental populations, which was unexpected based on the current views of D. simulans biogeography, (ii) the wKi strain (that rescues from CI while being unable to induce it) is very closely related to the CI-inducing strain wNo, (iii) wKi and wNo might not derive from a unique infection event, and (iv) wKi is likely to represent the same entity as the previously described wMa variant. In the West African population (Cameroon), the Wolbachia infection was found identical to the previously described wAu, which does not induce CI. This finding supports the view that wAu might be an ancient infection in D. simulans.