TianQin is a proposed space-based gravitational-wave detector designed to operate in circular high Earth orbits. As a sequel to [Zhang et al. Phys. Rev. D 103, 062001 (2021)], this work provides an analytical model to account for the perturbing effect of the Earth's gravity field on the range acceleration noise between two TianQin satellites. For such an ``orbital noise,'' the Earth's contribution dominates above $5\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}\text{ }\text{ }\mathrm{Hz}$ in the frequency spectrum, and the noise calibration and mitigation, if needed, can benefit from in-depth noise modeling. Our model derivation is based on Kaula's theory of satellite gravimetry with Fourier-style decomposition and uses circular reference orbits as an approximation. To validate the model, we compare the analytical and numerical results in two main scenarios. First, in the case of the Earth's static gravity field, both noise spectra are shown to agree well with each other at various orbital inclinations and radii, confirming our previous numerical work while providing more insight. Second, the model is extended to incorporate the Earth's time-variable gravity. Particularly relevant to TianQin, we augment the formulas to capture the disturbance from the Earth's free oscillations triggered by earthquakes, of which the mode frequencies enter TianQin's measurement band above 0.1 mHz. The analytical model may find applications in gravity environment monitoring and noise-reduction pipelines for TianQin.
Read full abstract