This review examines ultra-low frequency (ULF) waves across different planetary environments, focusing on Earth, Mercury, and Saturn. Data from spacecraft missions (CHAMP, Swarm, and Oersted for Earth; MESSENGER for Mercury; and Cassini for Saturn) provide insights into ULF wave dynamics. At Earth, compressional ULF waves, particularly Pc3 waves, show significant power near the equator and peak around Magnetic Local Time (MLT) = 11. These waves interact complexly with Alfvén waves, impacting ionospheric responses and geomagnetic field line resonances. At Mercury, ULF waves transition from circular to linear polarization, indicating resonant interactions influenced by compressional components. MESSENGER data reveal a lower occurrence rate of ULF waves in Mercury’s foreshock compared to Earth’s, attributed to reduced backstreaming protons and lower solar wind Alfvénic Mach numbers, as ULF wave activity increases with heliocentric distance. Short Large-Amplitude Magnetic Structures (SLAMS) observed at Mercury and Saturn show distinct characteristics compared to those of Earth, including the presence of whistler precursos waves. However, due to the large differences in heliospheric distances, SLAMS (their temporal scale size correlate with the ULF wave frequency) at Mercury are significantly shorter in duration than at Earth or Saturn, since the ULF wave frequency primarily depends on the strength of the interplanetary magnetic field. This review highlights the variability of ULF waves and SLAMS across planetary environments, emphasizing Earth’s well-understood ionospheric interactions and the unique behaviours observed for Mercury and Saturn. These findings enhance our understanding of space plasma dynamics and underline the need for further research regarding planetary magnetospheres.