This research aims to apply the displacement-based design method (DBDM) for the seismic design of reinforced concrete-coupled shear wall buildings equipped with energy dissipation dampers. The DBDM offers design simplicity by focusing on structural design based on a target design displacement, where the building converts into a single degree of freedom (SDOF) system. The implementation of dampers aims to reduce repair costs and downtime for buildings following significant seismic events. Two types of dampers are utilized in this study: metallic damper and viscoelastic damper. The DBDM procedure begins with determining the target displacement, which corresponds to the specific story drift ratio of the structural system, using a nonlinear static pushover analysis. For the structural wall system considered in this study, a target drift ratio of 1/250 is selected due to the inherent rigidity of the structure. The effective damping factor is then determined from the average energy absorption, which is based on the ductility factor of each structural member. Additionally, the effective period of the building is obtained from the displacement spectrum of the design-level earthquakes. Finally, the required damper shear capacity for the SDOF system is calculated based on the target deformation and effective stiffness. The design earthquakes are generated from the acceleration response spectrum for Level 2 earthquakes, as specified in the Japanese seismic code, utilizing three different sets of phase information: Kobe, El Centro, and random phase records. The effectiveness of the DBDM is scrutinized through a comparison with results obtained from time history analysis. The results obtained for 6-, 12-, and 18-story RC-coupled shear walls with energy dissipation dampers indicate that the proposed design methodology effectively meets the specified design objectives.
Read full abstract