Accurately and reasonably assessing earthquake casualties is crucial for seismic disaster planning and governmental decision-making. However, current research on earthquake casualty assessments often lacks sufficient consideration of the uncertainties related to seismic scenarios and influencing factors. To enhance the authenticity and reliability of casualty assessments, this study proposes a seismic casualty assessment model capable of simultaneously considering multiple influencing factors. It quantitatively evaluates each influencing factor and comprehensively integrates the uncertainty characteristics associated with seismic occurrence time, building damage states, and the number of occupants. Using a residential area as an example, the research compares casualty assessment results with and without considering apartment layouts and the age structure of residents. It also explains the probabilistic method for quantifying casualties and constructing vulnerability models for seismic events in the residential area. Additionally, a simplified analytical method applicable to probabilistic assessment of earthquake casualties in masonry residential areas in Beijing is proposed. The research findings indicate that the apartment layouts within buildings have a relatively minor impact on the assessment results of casualties in the residential area, while the age structure of residents significantly affects earthquake casualty estimates. Casualty rates in the residential area, considering uncertainties in the three factors, approximately follow a log-normal distribution. For seismic intensities ranging from VI(0.05g) to IX(0.40g), the standard deviation of casualty rates across different seismic intensities exceeds 0.4. The probabilistic analysis method proposed in this study enhances existing models for earthquake casualty assessments and addresses the shortcomings in probabilistic evaluation research.
Read full abstract