Diabetic retinopathy (DR), as one of the microvascular complications of diabetes, is a leading cause of acquired vision loss. Most DR cases are detected in the advanced stage through fundoscopy, making molecular biomarkers urgently needed for early diagnosis of DR. Serum disease-specific haptoglobin-β (Hp-β) chains of 100 patients with type 2 diabetes mellitus (T2DM) and 156 T2DM patients with non-proliferative diabetic retinopathy (NPDR) were separated using polyacrylamide gel electrophoresis. After in-gel digestion and enrichment, the intact N-glycopeptides were detected by mass spectrometry. Fucosylation of Hp-β was significantly increased and sialylation of Hp-β was significantly decreased in background DR (BDR, an early-stage DR) patients compared with non-diabetic retinopathy patients (p<0.05) and yielded area under curves (AUCs) of 0.801 and 0.829 in training and validation groups, respectively, which had an advantage over glycated hemoglobin A1c (AUC ≤ 0.691). Moreover, a significant increase in sialylated Hp-β was found in severe NPDR patients compared with BDR patients and yielded an AUC of 0.828 to distinguish severe NPDR from BDR. Changes in Hp-β glycosylation are closely related to DR, and may be used for early diagnosis and screening of DR.
Read full abstract