Non-healing wounds represent a substantial medical burden with few effective treatments available. To address this challenge, we developed a novel epidermal wound healing model using suction blisters in healthy volunteers. This model allowed for the comprehensive assessment of wound healing dynamics and the evaluation of INM-755, a topical cream containing cannabinol, as a potential therapeutic agent. Two clinical studies were conducted: an observational study and an interventional study. In both studies, healthy volunteers underwent a suction blister procedure on their lower back, creating open epidermal wounds. Wound healing parameters were assessed using advanced imaging systems. Skin barrier function and perfusion were evaluated through trans epidermal water loss (TEWL) and dynamic optical coherence tomography (D-OCT), respectively. The observational study demonstrated the successful and reproducible induction of blisters and the removal of epidermal sheet, enabling quantifiable measurements of wound healing parameters over time. Re-epithelialization was observed, revealing recovery of skin barrier function and perfusion. In the interventional study, differences of treatments over time were quantified using the above-described techniques. Despite differences from disease-specific blistering, our developed model provides a valuable platform for studying wound healing mechanisms and assessing novel therapeutic interventions. The sensitivity to treatment effects demonstrated in our study underscores the potential utility of this model in early-phase clinical drug development programs targeting wound healing disorders.
Read full abstract