Selecting seedlings of varying sizes and effectively managing root pruning are key challenges in transplantation. However, the effects of seedling size and root pruning on transplantation outcomes are not fully understood. This study classified one-year-old Populus ‘Beilinxiongzhu-01’ seedlings into three size categories based on height: large (308.75 ± 9.66 cm), medium (238.00 ± 7.71 cm), and small (138.92 ± 7.18 cm). In early March of the subsequent year, root pruning was applied with varying intensities based on root collar diameter: low (15 times), medium (7.5 times), and high (3.75 times). A control group without pruning was also included. Over the year, key phenological and morphological traits were monitored. The results showed that (1) root pruning significantly impacted the phenology of seedlings, accelerating root emergence, delaying early leaf phenology, increasing the dieback rate, and postponing end-of-season defoliation. Mortality and the rapid growth phase were not significantly affected. Larger seedlings exhibited earlier end-of-season defoliation and higher dieback rates early in the growing season, while smaller seedlings advanced in early leaf development. (2) Except under low or no pruning, root pruning reduced seedling height (H), diameter at breast height (DBH), and root collar diameter (RCD). However, across all treatments, these indicators remained higher in larger seedlings compared to smaller ones. Under medium- and high-intensity pruning, smaller seedlings exhibited higher relative growth rates and larger leaf areas than larger seedlings, with the reduction in these variables becoming more pronounced as seedlings increased in size. Notably, only larger seedlings demonstrated a reduction in maximum growth rate, suggesting greater vulnerability to root pruning. In summary, root pruning induced significant phenological and morphological differences across seedling sizes. While smaller seedlings showed some response to pruning, larger seedlings experienced more pronounced phenological disruptions and growth inhibition.
Read full abstract