In the Huanggangliang–Ganzhuermiao metallogenic belt in the southern Great Xing’an Range, the Haobugao Pb‒Zn deposit is the most widespread skarn-type polymetallic deposit. The observed mineralization processes in this area are closely associated with both magmatic and tectonic activity. The zircon U‒Pb ages of two granitoid phases are 134.0 ± 0.6 Ma and 133.4 ± 0.9 Ma (Early Cretaceous). High SiO2 content (average mass fractions of 77.98 wt.% and 73.25 wt.%), high alkalinity (average mass fractions of 6.19 wt.% and 8.78 wt.%), and low CaO levels (average mass fractions of 0.16 wt.% and 0.12 wt.%) are characteristic of these rocks. They are also enriched in high-field-strength elements (HFSEs) (Th, U, Ta, Zr, Hf, etc.) and depleted in large ion lithophile elements (LILEs) (Ba, Sr, etc.). Furthermore, the Nb/Ta ratios (7.80~8.82, 10.00~10.83) point to a crustal origin of the magma. The zircon Hf isotopic compositions suggest that the melting of young crust derived from Meso-Neoproterozoic and Neoproterozoic depleted mantle gave rise to the magma in these granite porphyries. These rocks formed in an extensional environment driven by the subduction and retreat of the Paleo-Pacific plate during the Early Cretaceous.
Read full abstract