Ovarian dysfunction at any age is associated with increased cardiovascular risk in women; however, therapeutic effects of exogenous estrogens are age dependent. Estradiol (E2) activates neuronal nitric oxide synthase (nNOS) in vascular cells. Because nNOS is prone to uncoupling under unfavorable biochemical conditions (as seen in aging), E2 stimulation of nNOS may lack vascular benefits in aging. Small mesenteric arteries were isolated from female Sprague Dawley rats, 3 or 12 months old, who were ovariectomized (Ovx) and treated with placebo or E2 for 4 wk. Vascular relaxation to exogenous E2 (0.001-100 μmol/liter) ± selective nNOS inhibitor (N-propyl-l-arginine, 2 μmol/liter) or pan-NOS inhibitor [Nω-nitro-l-arginine methyl ester (l-NAME), 100 μmol/liter] was examined on wire myograph. NOS expression was measured by Western blotting in thoracic aortas, in which superoxide generation was detected as dihydroethidium (DHE) fluorescence. E2 relaxations were impaired in Ovx conditions. E2 treatment (4 wk) normalized vascular function in young rats only. Both l-N-propyl-l-arginine and l-NAME blunted E2 relaxation in young controls, but only l-NAME did so in aging controls. NOS inhibition had no effect on acute E2 relaxation in Ovx rats, regardless of age or treatment. nNOS expression was similar in all animal groups. However, nNOS inhibition increased DHE fluorescence in young controls, whereas it reduced it in aging or Ovx animals. In E2-treated animals of either age, superoxide production was NOS independent. In conclusion, nNOS contributed to vascular relaxation in young, but not aging rats, where its enzymatic function shifted toward superoxide production. Thus, nNOS dysfunction may explain a mechanism of impaired E2 signaling in aging conditions.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access