AME Aquatic Microbial Ecology Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsSpecials AME 79:209-219 (2017) - DOI: https://doi.org/10.3354/ame01829 Diversity and abundance of sulfate-reducing microorganisms in a Mediterranean lagoonal complex (Amvrakikos Gulf, Ionian Sea) derived from dsrB gene Christina Pavloudi1,2,3,*, Anastasis Oulas1, Katerina Vasileiadou1, Georgios Kotoulas1, Marleen De Troch3, Michael W. Friedrich2, Christos Arvanitidis1 1Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, PO Box 2214, 71003 Heraklion, Greece 2Microbial Ecophysiology Group, Faculty of Biology/Chemistry and MARUM, University of Bremen, 28359 Bremen, Germany 3Marine Biology Research Group, Department of Biology, Faculty of Sciences, University of Ghent, 9000 Ghent, Belgium *Corresponding author: cpavloud@hcmr.gr ABSTRACT: Sulfate-reducing microorganisms (SRMs) are a phylogenetically and physiologically diverse group of microorganisms, responsible for the dissimilatory reduction of sulfate. SRMs thrive under anaerobic conditions with high availability of organic matter. Such conditions characterize lagoonal ecosystems which experience regular dystrophic crises. The aim of the present study was to explore the biodiversity patterns of SRMs and to examine the extent to which these patterns are associated with biogeographic and environmental factors. Sediment samples were collected from 5 lagoons in the Amvrakikos Gulf (Ionian Sea, western Greece). DNA was extracted from the sediment and was further processed through pyrosequencing of a region of the dissimilatory sulfite reductase β-subunit (dsrB). The results of this exploratory study show that the majority of the observed operational taxonomic units (OTUs) belong to the Deltaproteobacteria supercluster and more specifically, to the Desulfobacteraceae family. Salinity and ammonium ions are the environmental factors that best correlated with the SRM community pattern. Furthermore, the SRM community of the brackish lagoons is differentiated from that of the brackish-marine lagoons and the studied lagoons have distinct SRM communities. KEY WORDS: dsrB gene · Amvrakikos Gulf · Lagoon · Pyrosequencing · Sediment · Sulfate-reducing microorganisms Full text in pdf format Supplement 1 Supplement 2 Supplement 3 PreviousNextCite this article as: Pavloudi C, Oulas A, Vasileiadou K, Kotoulas G, De Troch M, Friedrich MW, Arvanitidis C (2017) Diversity and abundance of sulfate-reducing microorganisms in a Mediterranean lagoonal complex (Amvrakikos Gulf, Ionian Sea) derived from dsrB gene. Aquat Microb Ecol 79:209-219. https://doi.org/10.3354/ame01829 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in AME Vol. 79, No. 3. Online publication date: June 12, 2017 Print ISSN: 0948-3055; Online ISSN: 1616-1564 Copyright © 2017 Inter-Research.