We study the mechanism behind dynamical trappings experienced during Wang-Landau sampling of continuous systems reported by several authors. Trapping is caused by the random walker coming close to a local energy extremum, although the mechanism is different from that of the critical slowing-down encountered in conventional molecular dynamics or Monte Carlo simulations. When trapped, the random walker misses the entire or even several stages of Wang-Landau modification factor reduction, leading to inadequate sampling of the configuration space and a rough density of states, even though the modification factor has been reduced to very small values. Trapping is dependent on specific systems, the choice of energy bins, and the Monte Carlo step size, making it highly unpredictable. A general, simple, and effective solution is proposed where the configurations of multiple parallel Wang-Landau trajectories are interswapped to prevent trapping. We also explain why swapping frees the random walker from such traps. The efficacy of the proposed algorithm is demonstrated.
Read full abstract