Abstract Abrupt changes in aircraft attitude due to encountering terrain turbulence or wind shear at low altitudes can directly lead to serious accidents. Therefore, a highly responsive and reliable active attitude stabiliser on board is necessary to counteract low-level severe atmospheric disturbances. However, gust environments caused by local terrain and structures are difficult to represent with typical models, such as the Dryden continuous gust model in free space. As a result, an optimal model-based control design cannot be applied. To address this problem, this paper introduces an adaptive mechanism for updating motion equations based on atmospheric conditions using in-flight surface pressure-field sensing. Additionally, a dynamic wind tunnel experiment system, which can be constructed at universities at a low cost, is developed and described in detail. The effectiveness of the proposed scheme is evaluated through wind tunnel experiments and numerical simulations using a large number of gust samples.
Read full abstract