Parallel-aligned poly(vinyl alcohol) (PVA) nanofiber with a diameter of 240 ± 60 nm and an alignment parameter (S) of 0.95 ± 0.16 was obtained by a gap collector electrospinning that used copper (Cu) as a collector. The sandwiched cells (the horizontal-view and longitudinal-view) nematic liquid crystal was prepared by treating glass surfaces with the aligned PVA nanofiber to provide uniform anchoring of the director. When an electric field was applied to these samples, the electrohydrodynamic convection (EHC) pattern was observed. In the longitudinal-view cells, above a threshold voltage at low frequency, a typically low-frequency EHC rolls i.e., a Williams domain (WD) pattern was observed. By increasing the voltage, a fluctuating Williams domain (FWD) and grid patterns (GPs) could also be observed. In the transverse-view cells, at low-frequency regimes, WD, sawtooth patterned (STP), and dynamic scattering mode (DSM) patterns were observed. By replacing the conventional rubbing method with the use of parallel-aligned nanofibers, the well-known EHC phenomenon also could be observed.
Read full abstract