The arrival times of P and S waves, originating from earthquakes, diverse seismic tests, and events, are crucial geotechnical parameters. Derived from the inversion of these travel times, VP (P-wave velocity) and VS (S-wave velocity) are pivotal in geotechnical engineering, correlating directly with dynamic soil properties and enabling calculations of Poisson's Ratio (ν), Young's modulus (E), Shear modulus (μ), and Bulk modulus (B). Both VP and VS are crucial for evaluating soil behaviour under various conditions, aiding in modelling soil for settlement, wave propagation, seismic wave interaction, liquefaction potential analysis, seismic response analysis, and many more. The selection of arrival times for seismic tests, including Crosshole, Downhole, and Uphole tests, is done manually, which is time-consuming and potentially erroneous. To address this issue, various algorithms have been developed to automate the picking process. Some of these algorithms use wavelet transforms and Bayesian information criteria, while others use machine learning techniques such as artificial neural networks. These methods vary in terms of their accuracy, yet each one possesses inherent limitations when it comes to processing data with different levels of signal-to-noise ratio. The advancement of automated algorithms for determining arrival times is an ongoing and dynamic field of research. Apart from the existing research focused on determining the arrival time of P waves, there is a dearth of studies investigating the detection of S wave arrival times. To fill this gap, this study proposes new approaches for detecting both P and S wave arrival time(s). One approach entails the utilization of an iterative optimization algorithm to accurately fit a curve to the leading edge of the P waveform. The arrival time is determined by calculating a fraction relative to the highest point obtained from the fitted peak. The second approach entails identifying the exact moment of the S wave's arrival by determining the points of intersection between the oppositely polarized S waveforms. These methods provide a promising approach for automatically detecting both P and S wave arrival time(s), which has the potential to improve the precision and efficiency in picking up arrival time(s).
Read full abstract