The least rigid components of machining systems are cantilever tools and cantilever structural units of machine tools (rams, spindle sleeves, etc.). These components limit machining regimes due to the development of chatter vibrations, limit tool life due to extensive wear of cutting inserts, and limit geometric accuracy due to large deflections under cutting forces. Use of high Young's modulus materials (such as sintered carbides) to enhance the dynamic quality of cantilever components has only a limited effect and is very expensive. This paper describes a systems approach to the development of cantilever tooling structures (using the example of boring bars) which combine exceptionally high dynamic stability and performance characteristics with cost effectiveness. Resultant success was due to: (1) a thorough survey of the state of the art; (2) creating a “combination structure” concept with rigid (e.g. sintered carbide) root segments combined with light (e.g. aluminum) overhang segments, thus retaining high stiffness and at the same time achieving low effective mass (thus, high mass ratios for dynamic vibration absorbers, or DVAs) and high natural frequencies; (3) using the concept of “saturation of contact deformations” for efficient joining of constituent parts with minimum processing requirements; (4) suggesting optimized tuning of DVAs for machining process requirements; (5) development of DVAs with the possibility of broad-range tuning; (6) structural optimization of the system; and (7) using a novel concept of a “Torsional Compliant Head”, or TCH, which enhances dynamic stability at high cutting speeds and is suitable for high rev/min applications since it does not disturb balancing conditions. The optimal performance and interaction of these concepts were determined analytically, and then the analytical results were validated by extensive cutting tests with both stationary and rotating boring bars, machining steel and aluminum parts. Stable performance with length-to-diameter ratios up to L/ D = 15 was demonstrated, with surface finish 20–30 μm with both steel and aluminum at L/ D = 7–11. Comparative tests with commercially available bars demonstrated the advantages of our system.