The magnetic coupling wireless charging system may experience changes in mutual inductance and load due to the impact of actual underwater environment, which would lower the system’s transmission efficiency. In response to the circumstance, firstly, this paper proposes the circuit structure of the dynamic autonomous underwater vehicle wireless charging system with LCC-S-Buck-Boost, and a dynamic parameter identification method based on the multi-strategy nonlinear Rime algorithm. Secondly, it is proposed that the difference between the actual input current value of the primary side of the system and the current value calculated by the identification method, and the difference between the actual coil current value of the secondary side of the system and the coil current value calculated by the identification method are used as the adaptability function of the identification method, and the construction of the actual model of the system and the identification algorithm has been completed, and the results of the identification of the system’s mutual inductance and the equivalent load have been obtained. Finally, based on the identification results, it is confirmed that the proposed identification method is efficient and accurate in identifying system mutual inductance and equivalent loads in complex underwater environments by comparing with other algorithms under different values of mutual inductance and equivalent loads.
Read full abstract