Breast cancer poses a significant health threat to women, necessitating advancements in diagnostic technologies. Breast dynamic optical imaging (DOI) technology, recognized for its non-invasive and radiation-free properties, is extensively utilized for the early screening and quantitative analysis of breast tumors. The integration of deep learning, a robust technology for automatic image feature extraction, with breast DOI has the potential to enhance tumor detection and diagnosis significantly. This paper introduces a deep learning-enhanced image optimization approach to overcome challenges such as poor image quality and distorted projection data commonly encountered in existing DOI methods. The approach utilizes convolutional neural networks (CNNs) to extract features from raw images and employs generative adversarial networks (GANs) to enhance these images, thereby improving their quality and contrast. Additionally, a novel correction algorithm is developed to address projection data distortion, enabling the reconstruction and correction of this data for more accurate and reliable imaging results. Experimental findings confirm that the proposed method markedly enhances both image quality and projection data accuracy in breast DOI, offering a reliable foundation for clinical diagnosis. This study not only provides a new perspective and methodology for the early screening and diagnosis of breast cancer but also holds substantial clinical importance and prospective applications.
Read full abstract