Multi-objective evolutionary algorithms suffer from performance degradation when solving dynamic multi-objective optimization problems (DMOPs) with a new conditional configuration from scratch, which motivates the research on knowledge extraction. However, most knowledge extraction strategies only focus on obtaining effective information from a single knowledge source, while ignoring the useful information from other knowledge sources with similar properties. Motivated by this, a weighted multi-source knowledge extraction strategy-based dynamic multiobjective evolutionary algorithm is proposed. First, a similarity criterion based on angle information is constructed to quantify similarity between different source domains and the target domain. Second, a knowledge extraction technique is developed to select a specific number of individuals from each source domain using a distance metric. Third, a generation strategy based on dynamic weighting mechanism is proposed, which generates a certain number of individuals and merges these individuals into the initial population within the new environment. Finally, the comprehensive experiments are conducted on public DMOP benchmarks and demonstrate the devised method significantly outperforms the state-of-the-art competing algorithms.
Read full abstract