We present a general framework for verifying programs with complex dynamic linked data structures whose correctness depends on ordering relations between stored data values. The underlying formalism of our framework is that of forest automata (FA), which has previously been developed for verification of heap-manipulating programs. We extend FA with constraints between data elements associated with nodes of the heaps represented by FA, and we present extended versions of all operations needed for using the extended FA in a fully-automated verification approach, based on abstract interpretation. We have implemented our approach as an extension of the Forester tool and successfully applied it to a number of programs dealing with data structures such as various forms of singly- and doubly-linked lists, binary search trees, as well as skip lists.
Read full abstract