Metallic materials with unique microstructure can achieve desirable strength-ductility synergy. However, effectively fabricating and precisely controlling microstructure distribution in metals remain challenging. Microparticle impact, the key process of cold spray technique, can lead to a gradient structure in the particle, which may also serve as a promising additive manufacturing technology. To investigate the dynamic formation mechanism of heterogeneous microstructure and its significant influencing factors, the crystal plasticity material point method (CPMPM) is developed, especially for microstructure formation under a high strain rate and large deformation. Our work provides a quantitative analysis of evolution of structural gradient during impact. It is found that decreasing grain size can afford a larger structural gradient and there is negligible influence on the compression ratio of particles. It suggests that microstructure distribution can be tailored by optimizing the impact process without influencing vertical deformation of particles.
Read full abstract