In this article, we generalize previously reported results for linear, time-invariant, stabilizable multivariable systems described by a <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">strictly</i> proper transfer function matrix <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$P(s)$</tex-math></inline-formula> with number of outputs greater than or equal to the number of inputs. By making use of a special kind of a left generalized inverse <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$P(s)_{\alpha }^{\oplus }$</tex-math></inline-formula> of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$P(s)$</tex-math></inline-formula> , we define and examine the equivalent relation <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\mathcal {R}$</tex-math></inline-formula> relating <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$P(s)$</tex-math></inline-formula> with the members of the equivalence class <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$[P(s)]_{R}$</tex-math></inline-formula> of the closed loop-transfer function matrices <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$P_{C}(s)$</tex-math></inline-formula> obtainable from <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$P(s)$</tex-math></inline-formula> by the use of a proper compensator <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$C(s)$</tex-math></inline-formula> in the feedback path. For <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\mathcal {R}$</tex-math></inline-formula> , we establish a set of complete invariants and a canonical form. These results give rise to a simple algorithmic procedure for the computation of <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">proper</i> internally stabilizing and denominator assigning compensators <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$C(s)$</tex-math></inline-formula> for the class of plants with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$p=m$</tex-math></inline-formula> and having no zeros in the closed right half complex plane: <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\mathbb {C}^{+}$</tex-math></inline-formula> and in the case when <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$p>m$</tex-math></inline-formula> plants characterized by right polynomial matrix fraction descriptions with a polynomial matrix numerator having at least one subset of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$m$</tex-math></inline-formula> rows that give rise to a nonsingular polynomial matrix with no zeros in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\mathbb {C}^{+}$</tex-math></inline-formula> .