Self-assembly is an effective approach to construct complicated structures. Polyrotaxanes (PRs) as one of the typical polymer types with complex structure, own interlocked structures and dynamic components, in which it results in unique characteristics and functions. Currently, the synthesis of which involves covalent reactions to hinder the development of polyrotaxanes. Herein, we employed supramolecular interactions as well as dynamic covalent bonds to synthesize PRs by sequential self-assembly. First, we prepared M1 possessing two diamine structures and M2 of a bisammonium salt with two dibenzylammonium (DBA) units modified by two stoppers at its ends, then M1 and M2 self-assembled into supramolecular polymers stemming from hydrogen bonding of [N+-H ⋅ ⋅ ⋅ O] under high concentrations. After adding 2,6-pyridinedicarboxaldehyde (M3), the imine bond formation enabled the generation of macrocycles, transforming supramolecular polymers into PRs. Besides, the solution of polyrotaxanes was applied as the adhesive for diverse hard and soft materials. This strategy provides an important approach for synthesizing PRs, accelerating the advances of mechanically interlocked polymers.
Read full abstract