Although a wide variety of background subtraction methods has been proposed in recent years, none has been able to fully address multi-scale moving objects and dynamic background in real surveillance tasks. In this paper, a novel and effective background subtraction method, named regional multi-feature-frequency (RMFF), is proposed to detect multi-scale moving objects under dynamic background. Unlike many existing methods construct background model using simple multi-feature combinations, RMFF exploits the spatiotemporal cues of multi-feature as well as superpixels at each scale, thus allowing for more robust information to be exploited for background modeling. Specifically, the spatial relationship between pixels in a neighborhood and the frequencies of features over time are first exploited, enabling accurate detection of moving objects while ignoring most dynamic background changes. Then, the use of multi-scale superpixels for exploiting the structural information existing in real-world scenes further enhances robustness to multi-scale objects and environmental variations. Finally, an adaptive strategy is employed to dynamically adjust the foreground/background segmentation threshold for each region without user intervention. This adaptive threshold is defined for each region separately, and can adjust dynamically based on continuous monitoring of the background changes, thereby effectively reducing potential segmentation noise. Experiments on the 2014 version of the ChangeDetection.net dataset demonstrate that the proposed method outperforms the 12 state-of-the-art algorithms in terms of overall F-Measure and performs effectively in many complex scenes. Consequently, it is verified that the developed approach is feasible and useful for robust application in practical video surveillance.