To suppress large vibrations of the cable in cable-stayed bridges, it is common to install transverse dampers near the end of the cable. This paper focuses on the cable-damper system; based on the dynamic stiffness method, an accurate dynamic analysis method considering cable parameters, damper parameters, and cable forces is proposed. First, a mechanical analysis model is established which is closer to the cable with a transverse damper installed in the bridge. The model considers the cable bending stiffness, sag, inclination angle, cable force, damper stiffness, damping coefficient, and damper installation height. Then, the characteristic frequency equation of the cable-damper system is established, and a solution method that combines the initial value method and Newton–Raphson method is proposed. This method is confirmed to provide more accurate frequency analysis for the cable-damper system. Finally, using this method, the effect of the damper parameters on the dynamic characteristics of the system is investigated.
Read full abstract