Much attention has recently been paid to anomalously low dielectric constants of nanoconfined water between two slabs at room temperature (Fumagalli et al. Science, 2018, 360, 1339). These low values imply that the dipole rotation of the interfacial water on the slab is completely suppressed. Such freezing has so far been observed for water confined between solids. In contrast, it remains unclear whether this holds for water in soft confinement, which is omnipresent naturally and artificially. Here, we address this question using encapsulated reverse micelles with a dye molecule, allowing us to study water sandwiched between the surfactant and dye molecules in solution. Moreover, we examine the solvation related to the dielectric property of water, which is reorientational motion in the hydration layer of the dye molecule, by persistent hole-burning spectroscopy. We first show that the dye molecule is surrounded by water without contact with the surfactant and that the dye molecule has two or three hydration layers on average. We next demonstrate that the solvation dynamics is frozen below the water droplet size of ∼4 nm, whereas they become liquid-like when the RM size is further increased. The average gap distance (∼1.5 nm) for freezing the solvation agrees with the gap distance with no rotational water motions between slabs. Our findings may have biological relevance, providing a new aspect for understanding biological function in cells.
Read full abstract